North America Only

LS200 Series Direct-Operated Regulators

Figure 1. LS200 Series Direct-Operated Regulators

Features

- Wide Pressure Range Capability with Single Regulator - Up to 60 psi / 4.1 bar outlet pressure.
- Suitable for Monitoring Applications Pair the LS200 Series with pilot operated regulator in a monitor application for spring open and spring closed.
- Excellent Shock Characteristics and Fast Speed of Response - Due to two-way stabilizer vent valve, which vents the spring case more rapidly than conventional vents, lag in diaphragm and valve disk movement is minimized.
- Suitable for Hydrogen Applications
 Contact your local sales channel or
 Emerson Impact Partner for more details on
 Hydrogen configurations.

- Bubble-Tight Shutoff Single-port construction, large diaphragm area, lightrate springs along with ideal durometer disk material and seat design provide low lock-up pressures.
- Change Elastomer Disk without
 Disassembling the Actuator Hex shaped stem allows for disk removal without holding the stem during maintenance. Eliminates the chance of damaging the diaphragms during maintenance.
- No Seat-to-Seat Adjustment Required

 Balanced single-port design eliminates
 necessity for seat-to- seat adjustments to achieve bubble-tight shutoff.

LS200 Series

Specifications

The Specifications section lists the specifications for the LS200 Series direct-operated regulators. Factory specification is stamped on the nameplate fastened on the regulator at the factory.

Actuator Sizes

Types LS220 and LS224 (350 mm): Medium pressure construction for outlet pressure range of 4.35 to 10 psig / 0.3 to 0.69 bar.

Maximum operating inlet pressure of 125 psi / 8.61 bar. Medium Pressure for outlet range of 10 to 21.75 psi / 0.69 to 1.5 bar has a maximum operating inlet up to 285 psig / 19.6 bar. The maximum operating and emergency inlet pressure rating is 285 psig / 19.6 bar.

Types LS250 and LS254 (255 mm): High pressure construction for outlet pressure range of 20 to 60 psig / 1.38 to 4.14 bar. The maximum operating inlet pressure is 285 psig / 19.6 bar with a maximum emergency inlet pressure of 285 psig / 19.6 bar.

Outlet Pressure Ranges(1)

See Table 2

Pressure Ratings(1)

See Table 2

Maximum Outlet Pressure(1)

See Table 3

Wide Open Flow Coefficients

See Tables 4

Certifications

EN 334, EN 14382 and Pressure Equipment Directive (PED) DVGW Up to 25% Hydrogen Blend (Pending 100%) V9 Certifications

Pressure Registration

External; downstream control line is required

Temperature Capabilities(1)(2)

-20 to $150^\circ F$ / -29 to $66^\circ C$ / Lockup and Function Tested to -40 $^\circ F$ / -40 $^\circ C$

Control Line Connection

Without Slam-Shut: 1/4 NPT (internal); connection will be positioned directly over body outlet (standard position) or 90 degrees right or left of standard position if specified.

With Slam-Shut: 1/4 NPT (internal) connection right or left directly over slam-shut. Can be selected or changed after shipment.

Vent Connection

3/4 NPT (internal) vent assembly.

Approximate Weight

Body

NPT: 26.5 lbs / 12 kg 2x2: 30.4 lbs / 13.5 kg 2x4: 38.7 lbs / 17.55 kg

Slam-Shut Device: 16.4 lbs / 7.45 kg Types LS220 and LS224 Actuator: 61.1 lbs / 27.7 kg (Eye nuts included) Types LS250 and LS254 Actuator: 44.9 lbs / 20.35 kg (Eye nuts included)

- Easy Access to Trim Parts Change the valve disk in 30 minutes or less. Valve seat, disk, and cage easily removed with body remaining in line and without disassembly of actuator portion. Disk is accessible from bottom flange.
- Reusable Pressure Seals O-rings used for pressure seals, unlike gaskets, are not ordinarily damaged by disassembling the regulator.
- Resistance to Piping Stresses Steel constructions are available to help resist pipe stresses.

The pressure/temperature limits in this Bulletin or any applicable standard limitation should not be exceeded.

Using optional restriction collar.

Table 1. Available Configurations

		TYP	E NUN	IBER		OPTION
L	L S 2					OPTION
						PRESSURE CONSTRUCTION
			0			Low Pressure Applications (In Development)
			2			Medium Pressure Applications (Outlet Pressure: 4.35 to 21.75 psig / 0.3 to 1.5 bar)
			5			High Pressure Applications (Outlet Pressure: 20 to 60 psig / 1.38 to 4.14 bar)
						OVERPRESSURE PROTECTION
				0		Without Overpressure Protection Module
	4				With Slam-shut Module ⁽¹⁾	
						Example: Type number LS224: LS200 Series regulator constructed for medium pressure applications, with Type VSX4 slam-shut module and external pressure registration. 1. Reference Instruction Manual D103127X012 for Type VSX8 safety slam-shut module.

Table 2. LS200 Series Outlet Pressure Ranges, Control Springs

	ACTUATOR	oppuse.	DANGE		CONTRO	L SPRING			
TYPE	DIAMETER SIZE,	SPRING	RANGE	DADT NUMBER	WIRE DI	001.00			
	mm	psig	bar	PART NUMBER	In.	mm	COLOR		
		4.35 to 5.1	0.3 to 0.35	ERAA07586A0	8.5	0.312	Light Green		
LS220 and	350			4.35 to 10.6	0.3 to 0.73	ERAA07589A0	10.5	0.406	Pink
LS224		4.8 to 15.7	0.33 to 1.08	ERAA07283A0	12	0.438	Dark Blue		
		8.3 to 21.75	0.57 to 1.5	ERAA07283A0	12.5	0.5	Orange		
		20 to 30.3	1.38 to 2.09	ERAA07589A0	10.5	0.406	Pink		
LS250 and LS254	255	20 to 44.8	1.38 to 3.09	ERAA07592A0	12	0.438	Dark Blue		
		25 to 60	1.72 to 4.14	ERAA07283A0	12.5	0.5	Orange		

Table 3. Maximum Inlet and Outlet Pressures

PRESS	NIDE	TYPE	LS220	TYPE LS250		
FRESS	OURE	psig	bar	psig	bar	
Maximum Operating Inlet Pressure	<10 psi / 0.69 bar max outlet pressure	125	8.61			
Maximum Operating inlet Pressure	>10 psi / 0.69 bar max outlet pressure	285	19.6	285	19.6	
Maximum Emergen	ncy Inlet Pressure	285	19.6	285	19.6	
Maximum Operating	Outlet Pressure ⁽¹⁾	21.7	1.5	60	4.13	
Maximum Outlet Pressure O	ver Outlet Pressure Setting	28.9	2.0	83.7	5.77	
Maximum Emergency Ou	115	7.9	150	10.34		
With highest spring range available only.						

Table 4. Wide Open Flow Coefficients

	UNIT INFORMATION		FLOW COEFFICIENTS				
Regulator	Body	Туре	C _g	C,	C _v		
	2x2	LS220 and LS250	2083	29	72		
LS200 Series	2x4		2461	33	74		
LS200 Series	2x2		2001	28	28		
	2x4	LS224 and LS254 with SSD	2304	34	67		

LS200 Series

 Table 5. Pressure Ranges and Body Pressure-Temperature Ratings Without PED Certification

TYPE	OUTLET	RANGE	BODY MATERIAL	END CONNECTION	TEMPERAT	URE RANGE	MAX OPERA	ATING INLET		PRESSURE ING		
	psig	bar	WATERIAL		°F	°C	psig	bar	psig	bar		
				PN 16	-20 to 100	-29 to 38			232	16		
			Ductile iron	11410	-20 to 150	-29 to 66			202	10		
			Ductile Iron	CL150 RF	-20 to 100	-29 to 38			249	17.2		
				OL 130 IXI	-20 to 150	-29 to 66		8.6	242	16.7		
				PN 16	-20 to 100	-29 to 38			232	16		
				FINIO	-20 to 150	-29 to 66			232	10		
LS220 and	4.35 to 10	0.3 to 0.69	Steel	CL150 RF	-20 to 100	-29 to 38	125		285	19.6		
LS224	4.00 to 10	0.0 to 0.00	Oteci	OE 100 TU	-20 to 150	-29 to 66	120	0.0	271	18.7		
				NPT	-20 to 100	-29 to 38			285	19.6		
				INFI	-20 to 150	-29 to 66			271	18.7		
				CL125 FF	-20 to 100	-29 to 38						
			Cast iron		-20 to 150	-29 to 66			175	12.1		
			Cast IIOII	NDT	-20 to 100	-29 to 38			1/5	12.1		
				NPT ·	-20 to 150	-29 to 66						
				DN 16	-20 to 100	-29 to 38	222	16	222	16		
			Duetile iron	PN 16	-20 to 150	-29 to 66	- 232	16	232	10		
			Steel	Ductile iron	Ductile Iron	CL150 RF	-20 to 100	-29 to 38	249	17.2	249	17.2
				OE 130 IXI	-20 to 150	-29 to 66	242	16.7	242	16.7		
				PN 16	-20 to 100	-29 to 38	232	40	000	40		
					-20 to 150	-29 to 66	232	16	232	16		
LS220 and	10 to 21.7	0.69 to 1.5		Steel	Steel	CL150 RF	-20 to 100	-29 to 38	285	19.6	285	19.6
LS224	10 10 21.7	0.03 to 1.3			CL 150 RF	-20 to 150	-29 to 66	271	18.7	271	18.7	
						NDT	-20 to 100	-29 to 38	285	19.6	285	19.6
				NPT	-20 to 150	-29 to 66	271	18.7	271	18.7		
				OL 125 EE	-20 to 100	-29 to 38	475	12.1	175	12.1		
			Continue	CL125 FF	-20 to 150	-29 to 66						
			Cast iron	NDT	-20 to 100	-29 to 38	175			12.1		
				NPT	-20 to 150	-29 to 66						
				DN 40	-20 to 100	-29 to 38	000	40	000	40		
			Describe incom	PN 16	-20 to 150	-29 to 66	- 232	16	232	16		
			Ductile iron	01.450.05	-20 to 100	-29 to 38	249	17.2	249	17.2		
				CL150 RF	-20 to 150	-29 to 66	242	16.7	242	16.7		
				DN 40	-20 to 100	-29 to 38	000	40	000	40		
				PN 16	-20 to 150	-29 to 66	- 232	16	232	16		
LS250 and	20 t- 00	1 27 1- 1 10	C+!	01.450.05	-20 to 100	-29 to 38	285	19.6	285	19.6		
LS254	20 to 60	1.37 to 4.13	Steel	CL150 RF	-20 to 150	-29 to 66	271	18.7	271	18.7		
				NDT	-20 to 100	-29 to 38	285	19.6	285	19.6		
				NPT	-20 to 150	-29 to 66	271	18.7	271	18.7		
				01.405.55	-20 to 100	-29 to 38						
			0	CL125 FF	-20 to 150	-29 to 66	475			40.		
			Cast iron	NIDT	-20 to 100	-29 to 38	175	12.1	175	12.1		
				NPT	-20 to 150	-29 to 66	1					

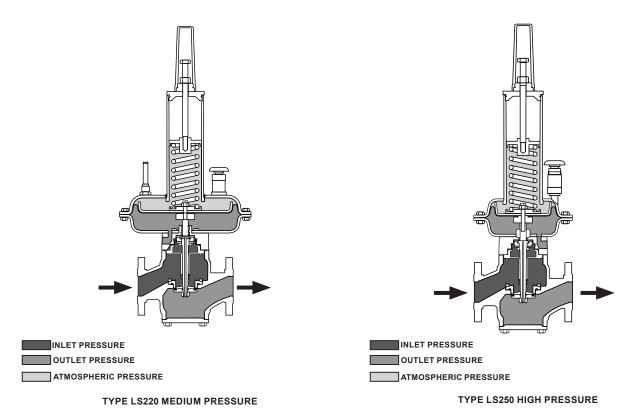


Figure 2. LS200 Series Regulator Operational Schematic

 Table 6. Pressure Ranges and Body Pressure-Temperature Ratings With PED Certification

TYPE	OUTLET RANGE		BODY	END CONNECTION	TEMPERATURE RANGE		MAX OPERA	ATING INLET	MAX BODY PRESSURE RATING							
	psig	bar	MATERIAL		°F	°C	psig	bar	psig	bar						
				PN 16	-4 to 100	-20 to 38			232	16						
			Ductile iron	PN 10	-4 to 140	-20 to 60]		232	10						
			Ducille Iron	CL150 RF	-4 to 100	-20 to 38			249	17.2						
				CL 150 KF	-4 to 140	-20 to 60			242	16.7						
LS220 and	4.35 to 10	0.3 to 0.69		PN 16	-4 to 100	-20 to 38	125	8.6	232	16						
LS224	4.55 10 10	0.5 10 0.09		FINIO	-4 to 140	-20 to 60	123	0.0	232	10						
			Steel	CL150 RF	-4 to 100	-20 to 38			285	19.6						
			Steel	CL 150 KF	-4 to 140	-20 to 60]		271	18.7						
				NPT	-4 to 100	-20 to 38]		285	19.6						
				INFI	-4 to 140	-20 to 60			271	18.7						
			Ductile iron	PN 16	-4 to 100	-20 to 38	232	16	232	16						
					-4 to 140	-20 to 60		10		10						
			Ducille Iron	CL150 RF	-4 to 100	-20 to 38	249	17.2	249	17.2						
					-4 to 140	-20 to 60	242	16.7	242	16.7						
LS220 and	10 to 21.7	0.69 to 1.5	5 Steel	PN 16	-4 to 100	-20 to 38	232	16	232	16						
LS224	10 10 21.7	0.09 to 1.5			-4 to 140	-20 to 60		10		10						
					-4 to 100	-20 to 38	285	19.6	285	19.6						
				Steel	Steel	Steel	Steel	Steel	Steel	Oteei	CL 150 KF	-4 to 140	-20 to 60	271	18.7	271
				NPT	-4 to 100	-20 to 38	285	19.6	285	19.6						
				INFI	-4 to 140	-20 to 60	271	18.7	271	18.7						
				PN 16	-4 to 100	-20 to 38	232	16	232	16						
			Ductile iron	FINIO	-4 to 140	-20 to 60	232	10	252	10						
			Ductile IIOII	CL150 RF	-4 to 100	-20 to 38	249	17.2	249	17.2						
				OL 130 IXI	-4 to 140	-20 to 60	242	16.7	242	16.7						
LS250 and	20 to 60	1.37 to 4.13		PN 16	-4 to 100	-20 to 38	232	16	232	16						
LS254	20 10 00	1.37 10 4.13		FINIO	-4 to 140	-20 to 60	232	10	232	10						
			Steel	CL150 RF	-4 to 100	-20 to 38	285	19.6	285	19.6						
			Sieei	OL 130 KF	-4 to 140	-20 to 60	271	18.7	271	18.7						
				NPT	-4 to 100	-20 to 38	285	19.6	285	19.6						
				INFI	-4 to 140	-20 to 60	271	18.7	271	18.7						

Introduction

Description

The LS200 Series direct-operated gas regulators are primarily designed for low pressure natural gas distribution systems, industrial and commercial applications supplying gas to furnaces, burners, and other appliances. The LS200 balanced port design enables the regulator to provide accurate control of gas pressure for maximum combustion efficiency despite varying inlet pressure conditions. The single port construction provides bubble-tight shutoff. An external downstream control line is required for the operation of the regulator. Refer to Table 2 for outlet pressure ranges of each type. LS200 Series regulators are available in a 2 in. / DN 50 body size with either NPT or flanged end connections.

An optional restriction collar can be installed if wideopen capacity is too high for applications using a relief valve as overpressure protection. The collar reduces wide-open capacity to 40%, 60% or 78% of wide open capacity. 78% is sized for replacing the legacy Type 133HP 100% units without needing to resize the relief valve.

Principle of Operation

In the LS200 Series, downstream pressure is registered under the diaphragm via the external control line and is used as the operating medium. Increased demand lowers the downstream pressure and allows the spring to move the diaphragm and stem assembly down, opening the valve disk and supplying more gas to the downstream system. Decreased demand increases the downstream pressure and moves the diaphragm and stem assembly up, closing the valve disk and decreasing the gas supply to the downstream system.

Boosting System

The LS200 Series incorporates a balancing diaphragm and a boosting system. When the regulator is locked up, inlet pressure is registered on the top of the disk and on the bottom of the balancing diaphragm through space between the stem and cage. Also, downstream pressure is registered on the bottom of the disk and on the top of the balancing diaphragm through a passage in the stem.

When the trim is open, gas flows from the inlet over the edge of the disk to the outlet. Under the disk, there is little gas flow. The gas pressure is higher than it is in the flow path where gas velocity tends to lower the pressure. The higher pressure near the disk is registered on the top of the balancing diaphragm through the space between the stem and the cage.

This pressure registered on the top of the balancing diaphragm aids downward disk travel and compensates for spring and diaphragm effect. This improves regulator rangeability and performance

Installation

The regulator may be installed with actuator above or below the body but is normally installed with the actuator portion above the body portion. Flow through the body must be in the direction indicated by the flow direction arrow cast on the body portion. A downstream control line is required for operation of the regulator.

A remote vent line may be required for some installations. Vent openings must be protected against the entrance of rain, snow, insects, or any other foreign material that may plug the vent.

External dimensions are shown in Figure 3.

Integrated Slam-shut

The LS200 Series is offered with an integral slamshut device that will stop gas from flowing if an over pressure or under pressure condition occurs.

The slam-shut design is industry leading with only design allowing choice of which side of the body to install the slam-shut.

The slam-shut measuring element utilizes the VSX8 Series actuator (see VSX8 Series literature for more details and support). The VSX8 Series uses a positive latching mechanism instead of a ball bearing design. The Postiive Latch Mechanism reduces false trips related to vibration or external factors. See Figure 3 for more information.

Overpressure Protection

As is the case with most regulators, the LS200 Series regulators have outlet pressure ratings that are lower than the inlet pressure ratings. Some type of Overpressure Protection is needed if the actual inlet pressure ever exceeds the outlet pressure rating.

Maximum inlet and outlet pressures for the LS200 are given in Table 3. All models must be protected against inlet pressure above the maximum emergency inlet pressure (refer to Table 3).

Capacity Data

Flow capacities for various inlet pressures and outlet pressure settings are shown in Tables 7 and 8. Capacities are in thousands of Nm³/hr and SCFH at 60°F and 14.7 psia and in thousands of Nm³/h at 0°C and 1.01325 bar of 0.6 specific gravity gas. To convert to equivalent capacities of other gases, multiply the SCFH values shown by the appropriate factor: air – 0.775; propane-0.628; butane-0.548; nitrogen-0.789. For gases of other specific gravities, multiply the given capacity by 0.775, and divide by the square root of the appropriate specific gravity. Then, if capacity is desired in Nm³/h at 0°C and 1.01325 bar, multiply SCFH by 0.0268.

Note

For optimum performance, select the lowest spring range that includes the desired outlet pressure setting. Capacity Data gathered using 4 in. / DN 100 outlet piping.

For restricted-capacity constructions, determine flow capacities for outlet pressure settings of 2 psig / 0.14 bar or less by multiplying the values from Tables 7 and 8 by 40%, 60% or 78% (depending upon which restriction collar is selected). If flow capacities for inlet pressures lower than those shown are required, contact your local Sales Office.

The representative regulating C_g of 2000 may be used for regulator sizing of full capacity constructions only if capacity table data is not available. The representative regulating $\boldsymbol{C}_{_{\!\scriptscriptstyle Q}}$ is an approximation only for pressure drops greater than 5 psi / 0.34 bar, because, at a given offset in controlled pressure, the regulating C_a varies with the spring being used with the pressure drop across the valve.

To determine capacity using the flow coefficient C_a, use the appropriate procedure below.

Critical Pressure Drops

For critical pressure drops (absolute outlet pressure equal to or less than one-half of absolute inlet pressure), use the following formula:

$$Q = (P_1)(C_q)(1.29)$$

Non-Critical Pressure Drops

For pressure drops lower than critical (absolute outlet pressure greater than one-half of absolute inlet pressure).

$$Q = \sqrt{\frac{520}{GT}} C_g P_1 SIN \qquad \left(\frac{3417}{C_1} \sqrt{\frac{\Delta P}{P_1}}\right) DEG$$

where,

Q = gas flow rate, SCFH

P₁ C_g G = absolute inlet pressure, psia (P₁ gauge + 14.7) = regulating or wide-open gas sizing coefficient

specific gravity of the gas

Т = absolute temperature of gas at inlet, °Rankine

C₁ = flow coefficient

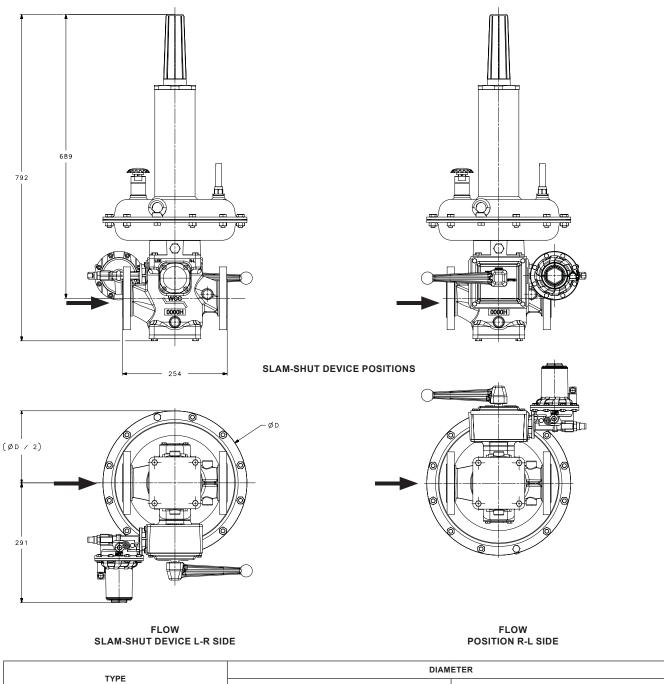

= pressure drop across the regulator, psi

Table 7. Full-Capacity Type LS220 with 2:1 Piping, 0.6 Specific Gravity Natural Gas

01:-				2-IN. / DN 50 BODY SIZE, 2.0 IN. / 51.3 mm ORIFICE SIZE								
	OUTLET PRESSURE SETTING INLET PRESSURE			Droop From Setpoint								
				1%	ABS	2% ABS 10			10% DROOP		20% DROOP	
psig	bar	psig	bar	SCFH	Nm³/hr	SCFH	Nm³/hr	SCFH	Nm³/hr	SCFH	Nm³/h	
		10	0.7	8710	247	12500	354	43793	1240	52782	1495	
		20	1.4	17981	509	23333	661	76187	2158	78460	2222	
		40	2.8	82341	2332	99325	2813	106583	3018	116580	3302	
5	0.3	60	4.1	160502	4545	163943	4643	169001	4786	175868	4981	
		80	5.5	148524	4206	212521	6019	220382	6241	226357	6410	
		100	6.9					271356	7685	275384	7799	
		125	8.6					309894	8776	313825	8888	
		25	1.7					79675	2256	98543	2791	
		30	2.1					95578	2707	113369	3211	
		40	2.8					128326	3634	136922	3878	
		60	4.1					164764	4666	175813	4979	
		80	5.5					206072	5836	213117	6035	
10	0.7	100	6.9					227091	6431	248661	7042	
10	0.7	125	8.6					258352	7317	291690	8261	
		150	10.3					347977	9855	378982	10733	
		175	12.1					412382	11679	412382	11679	
		200	13.8					419140	11870	419140	11870	
		250	17.2					427581	12109	427581	12109	
		285	19.7					433366	12273	433366	12273	
		25	1.7					63320	1793	91978	2605	
		30	2.1					75870	2149	107200	3036	
	İ	40	2.8					109237	3094	135242	3830	
	İ	60	4.1					157822	4470	168784	4780	
	İ	80	5.5					176053	4986	203002	5749	
45	1 . 1	100	6.9					228210	6463	253770	7187	
15	1.0	125	8.6					242342	6863	281076	7960	
	İ	150	10.3					344421	9754	374208	10598	
	İ	175	12.1					403178	11418	435217	12325	
	İ	200	13.8					487168	13797	487168	13797	
	İ	250	17.2					495098	14021	495098	14021	
	İ	285	19.7					500245	14167	500245	14167	
		25	1.7					57105	1617	83081	2353	
		30	2.1					71741	2032	103356	2927	
	İ	40	2.8					92019	2606	137065	3882	
		60	4.1					146788	4157	189690	5372	
		80	5.5					198183	5613	242433	6866	
		100	6.9					242207	6859	291671	8260	
20	1.4	125	8.6					296678	8402	328691	9309	
		150	10.3					357304	10119	402787	11407	
		175	12.1					419415	11878	480841	13617	
		200	13.8					482888	13675	540298	15301	
		250	17.2					574641	16274	574641	16274	
		285	19.7					580490	16439	580490	16439	

Table 8. Full-Capacity Type LS250 with 2:1 Piping, 0.6 Specific Gravity Natural Gas

				2 IN. / I	DN 50 BODY SIZE, 2.0	IN. / 51.3 mm ORIFIC	E SIZE		
OUTLET PRESS	SURE SETTING	INLET P	RESSURE	Droop From Setpoint					
				10% DROOP		20%	DROOP		
psig	bar	psig	bar	SCFH	Nm³/hr	SCFH	Nm³/hr		
		25	1.7	42969	1217	72402.9	2050		
		30	2.1	55879	1582	96957	2746		
		40	2.8	71664	2030	124914	3538		
		60	4.1	100779	2854	175967	4983		
		80	5.5	138015	3909	210399	5958		
20	1.4	100	6.9	168795	4780	241432	6837		
		125	8.6	201671	5711	285610	8088		
		150	10.3	242797	6876	329767	9339		
		175	12.1	259684	7354	349631	9902		
		200	13.8	296426	8395	379383	10744		
		250	17.2	344604	9759	458721	12991		
		285	19.7	391358 54032	11083 1530	475112 83869	13455 2375		
		40	2.1	78272	2217	122256	3462		
		60	4.1	115940	3283	175671	4975		
		80	5.5	147934	4189	218539	6189		
		100	6.9	184843	5235	250347	7090		
25	1.7	125	8.6	219609	6219	272706	7723		
20	1.7	150	10.3	253652	7183	310506	8794		
		175	12.1	285207	8077	357683	10130		
		200	13.8	303069	8583	414319	11734		
		250	17.2	369082	10452	463999	13140		
		285	19.7	412132	11672	498617	14121		
		40	2.8	58971	1670	104333	2955		
		60	4.1	97911	2773	162372	4598		
		80	5.5	132589	3755	209198	5924		
		100	6.9	158840	4498	245500	6953		
00	0.4	125	8.6	196339	5560	272671	7722		
30	2.1	150	10.3	229608	6503	297992	8439		
		175	12.1	258684	7326	336938	9542		
		200	13.8	288351	8166	377789	10699		
		250	17.2	343927	9740	425235	12043		
		285	19.7	391620	11091	454851	12881		
		60	4.1	116231	3292	167861	4754		
		80	5.5	149226	4226	210237	5954		
		100	6.9	183998	5211	262117	7423		
		125	8.6	222341	6297	317328	8987		
40	2.8	150	10.3	255638	7240	387193	10965		
		175	12.1	289429	8197	441489	12503		
		200	13.8	323134	9151	493538	13977		
		250	17.2	385536	10918	586912	16621		
		285	19.7	438793	12427	623680	17663		
		60	4.1	84226	2385	152954.1	4332		
		80	5.5	134742	3816	210297.3	5956		
		100	6.9 8.6	171986 205660	4871 5824	264217.3 319275.5	7483 9042		
50	3.4	150	10.3	242662	5824 6872	379275.5	10549		
50	J. 4	175	12.1	276234	7823	422908.9	11977		
		200	13.8	305373	8648	457419.6	12954		
		250	17.2	368722	10442	546566.5	15479		
		285	19.7	417982	11837	592009.6	16766		
		70	4.8	111857	3168	170493.5	4828		
		80	5.5	138535	3923	195192.6	5528		
		100	6.9	178838	5065	246702.4	6987		
		125	8.6	222557	6303	297393.7	8422		
60	4.1	150	10.3	262445	7432	353264.9	10004		
- -	***	175	12.1	306367	8676	370825.1	10502		
		200	13.8	336440	9528	411064.7	11641		
		250	17.2	407264	11534	598146.7	16940		
				285	19.7	446768	12652	672443.1	19044

 DIAMETER

 In.
 mm

 LS200
 18.7
 475

 LS220
 13.8
 350

 LS250
 10
 255

Figure 3. LS200 Series with Slam-Shut Device Assembly Positions and Dimensions

Ordering Information

Use the Specifications section on page 2 and carefully review the description to the right of each specification. Use this information to complete the Ordering Guide

on the following page. Specify the desired selection wherever there is a choice to be made. Then send the Ordering Guide to your local Sales Office.

Ordering Guide

Actuator (Select One) ☐ Type LS220 ☐ Type LS250
Body Material and End Connection Style (Select One)
Ductile Iron □ PN16 □ CL150 RF □ PN16 with expanded outlet □ CL150 RF with expanded outlet
Steel □ NPT □ PN16 □ CL150 RF □ PN16 with expanded outlet □ CL150 RF with expanded outlet
Outlet Pressure Range (Select One)
Type LS220 □ 4.35 to 5.1 psig / 0.30 to 0.35 bar, Light Green □ 4.35 to 10.6 psig / 0.3 to 0.73 bar, Pink □ 4.8 to 15.7 psig / 0.33 to 1.08 bar, Dark Blue □ 8.3 to 21.75 psig / 0.57 to 1.5 bar, Orange
Type LS250 □ 20 to 30.3 psig / 1.38 to 2.09 bar, Pink □ 20 to 44.8 psig / 1.38 to 3.09 bar, Dark Blue □ 25 to 60 psig / 1.72 to 4.14 bar, Orange

irim, Percent of Full Capacity (Select One)
□ 100% (standard)
□ 78%
□ 60%
□ 40%
Elastomers □ Nitrile (NBR) (standard)
Slam-Shut Position (refer to Figure 3) (Select One)
□ L-R
□ R-L
□ L-R with Field Conversion Option
□ R-L with Field Conversion Option

	Regulators Quick Order Guide
* * *	Readily Available for Shipment
* *	Allow Additional Time for Shipment
*	Special Order, Constructed from Non-Stocked Parts. Consult your local Sales Office for Availability.
	y of the product being ordered is determined by the component pagest shipping time for the requested construction.

Specification Worksheet
Application:
Specific Use
Line Size
Fluid Type
Specific Gravity
Temperature
Does the Application Require Overpressure Protection? ☐ Yes ☐ No
Pressure:
Maximum Inlet Pressure (P _{1max})
Minimum Inlet Pressure (P _{1min})
Downstream Pressure Setting(s) (P ₂)
Set Pressure
Maximum Flow (Q _{max})
Accuracy Requirements:
Less Than or Equal To: □ 5% □ 10% □ 20% □ 40%
Construction Material Requirements (if known):

\boxtimes	Webadmin.Regulators@emerson.com
-------------	---------------------------------

Facebook.com/EmersonAutomationSolutions

Q Fisher.com

in LinkedIn.com/company/emerson-automation-solutions

Emerson Automation Solutions

Americas

McKinney, Texas 75070 USA T +1 800 558 5853 +1 972 548 3574

Bologna 40013, Italy T +39 051 419 0611

Asia Pacific

Singapore 128461, Singapore T +65 6777 8211

Middle East and Africa

Dubai, United Arab Emirates T +971 4 811 8100

D104646X012 © 2023 Emerson Process Management Regulator Technologies, Inc. All rights reserved. 01/23. The Emerson logo is a trademark and service mark of Emerson

Electric Co. All other marks are the property of their prospective owners. Fisher™ is a mark owned by Fisher Controls International LLC, a business of Emerson Automation Solutions.

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

Emerson Process Management Regulator Technologies, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

